

General Definitions:

- Tissue group of cells similar structure and function along with similar extracellular substances between the cells
- Histology microscopic study of tissue structure
 - Histo- = tissue, -ology = study

Functions of Epithelial Tissue

- Secretion
 - Sweat glands, mucous glands, pancreas
- Absorption
 - Carrier molecules in intestine absorb nutrients (vitamins, ions, food molecules)

Classification of Epithelia

- Classified based on number of cell layers and cell shape
 - Simple epithelium 1 layer of cells
 - Stratified epithelium +1 layer of cells
 - Squamous (flat and scale-like)
 - Cuboidal (cube shaped)
 - Columnar (tall and thin)

Table 4.1	Classification of Epithelia				
Number of Layers		Cell Shape			
Simple (one tayer)		Squamous Cuboldal Columnar			
Pseudostratified (of simple epit	a modified form helium)	Columnar			
Stratified (more than one layer)		Squamous Keratinized Norikeratinized (moist)			
Transitional (a type of stratified epithelium)		Roughly cuboidal to columnar when not stretched and squamouslike when stretched			

Structural & Functional Relationships

Cell Layers

- <u>Multiple layers</u> protect underlying tissues
 - Damaged cells replaced by underlying cells
 Protect from abrasion (ex: skin, anal canal,
 - vagina)

Structural & Functional Relationships

Cell Shapes

- <u>Flat/thin</u> (squamous)
 - Diffusion in lung alveoli
 - Fluid filtration in kidney tubules

Structural & Functional Relationships

Cell Shapes

- <u>Cuboidal/columnar</u> secretion, absorption; contain more organelles
 - Secretory vesicles (mucus) in stomach lining
 Secretion/absorption in kidney
 - Active transport

Structural & Functional Relationships

- Free Cell Surfaces
 - Smooth reduces friction
 blood vessel lining smooth blood flow
 Microvilli increase cell surface area; cells
 - Increase cell surface area, cells involved in absorption or secretion
 Small intestine lining

Structural & Functional Relationships

Glands

- Gland multicellular structure secreting substance onto a surface, into a cavity, or into the blood
 - Exocrine gland (exo-outside + krino-to separate): glands with ducts

secretions pass through ducts onto a surface or into an organ

• Endocrine gland (endo-within): glands w/o ducts • Hormones are secreted into blood

Epithelium					
Epithelial Tissue Type	Structure	Function	Examples/ Locations	Drawing	
Simple Squamous					
Simple Cuboidal					
Simple Columnar					
Pseudostratified Columnar					
Transitional epithelium					
Glandular epithelium					

Connective Tissue

- The most abundant and widely distributed tissue in the body
- Multiple types, appearances and functions
- Relatively few cells in extracellular matrix (think: fruit "cells" floating or suspended in Jell-O)
 - Protein fibers
 - Ground substance
 - Fluid

Structure of Connective Tissue

- Three types of protein fibers:
 - Collagen fibers:
 - Rope-like; resist stretching
 - Reticular fibers:
 - Fine, short collagen fibers; branched for support
 - Elastic fibers:
 - Coiled; stretch and recoil to original shape

Structure of Connective Tissue

- Ground substance combination of proteins and other molecules
 - Varies from fluid to semisolid to solid
- Proteoglycans protein/polysaccharide complex that traps water

Naming Connective Tissue Cells Based on function: Blast (germ) produce matrix Osteoblast (osteo-bone) – form bone Cyte (cell) cells maintain it Osteocyte – maintain bone Clast (break) – cells break down for remodeling Osteoclast – break down bone

Naming Connective Tissue Cells

Based on function:

 Macrophage (makros-large + phago-to eat)
 large, mobile cells that ingest foreign substances found in connective tissue

Mast Cells

 nonmotile cells that release chemicals that promote inflammation

Functions of Connective Tissue Enclose organs and separate organs and tissues from one another Liver, kidney, muscles, blood vessels, nerves Connect tissue to each other Tendons – muscles to bone Ligaments – bone to bone Support and movement Bones, cartilage, joints

Functions of Connective Tissue

Storage

- Fat stores energy
- bone stores calcium
- Cushion and insulation
 - Fat cushions/protects/insulates (heat)
- Transportation
 - Blood transports gases, nutrients, enzymes, hormones, immune cells

Functions of Connective Tissue

Protection

- Immune & blood cells protect against toxins/tissue injury
- bones protect underlying structures

Composition: ECM has fibroblasts, collage, fluid-filled spaces Functions: forms thin membranes between organs and binds them (loose packing material)

Cartilage

- Chondrocytes (cartilage cells) inside lacunae (small spaces)
- Matrix composition (ECM):
 - Collagen flexibility & strength
 - Water (trapped by proteoglycans) rigidity and flexibility
 - No blood vessels slow healing, can't bring cells/nutrients

Nervous Tissue

- Forms brain, spinal cord, peripheral nerves
- Functions:
 - Conscious control of skeletal muscles
 - Unconscious control of cardiac and smooth muscles
 - Self and environmental awareness
 - Emotions
 - Reasoning skills
 - Memory
- Action potentials = electrical signals responsible for communication between neurons and other cells

