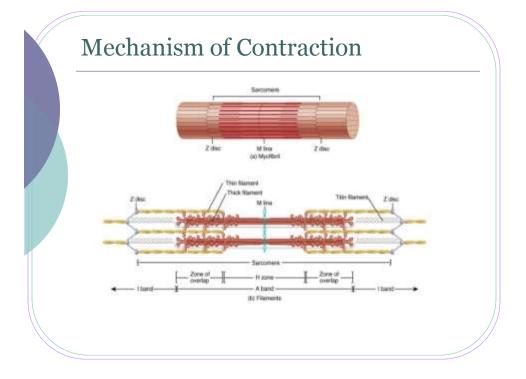

Muscle Physiology

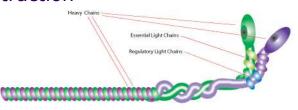
Neuromuscular Junction


Axon terminal of nerve forms junction with sarcolemma

- Never actually touch
- Space = synaptic cleft

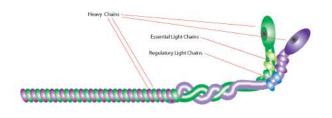
Neuromuscular Junction

- Synaptic vesicle releases neurotransmitter into synaptic cleft
 - Acetycholine (ACh) [quickly broken down]
- 2. ACh diffuses across cleft and attached to receptors on sarcolemma
- Sarcolemma temporarily permeable to Na+
 - cell interior has excess + ions
- 4. Change in electrical conditions generates action potential
 - Once begun = unstoppable
 - Contraction



Sliding Filament Theory

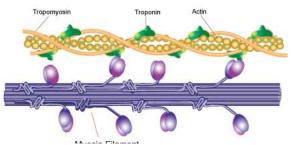
- The chemical players in muscle contraction
 - 1. myosin
 - 2. actin
 - 3. tropomyosin
 - 4. troponin
 - 5. ATP
 - 6. calcium ions


Myosin

- Thick filament
- A tail and two heads (cross bridge)
- Heads move back and forth, providing the power stroke for muscle contraction

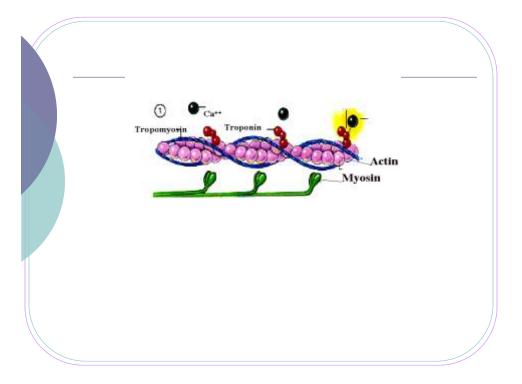
Myosin

 The cross bridge has binding site for actin and ATP.



Thin Filaments

Actin (double strand) contains myosin binding sites


Tropomyosin twists around the actin, blocking binding sites

Troponin moves tropomyosin to expose binding sites

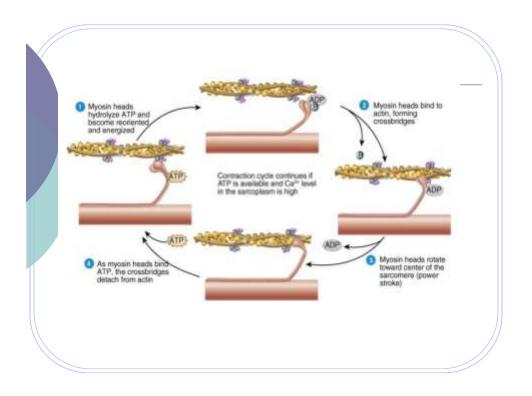
Role of Calcium

- Action potential occurs
- Ca²⁺ released from sarcoplasmic reticulum
- Ca²⁺ bind to troponin
 - Conformation change
- Tropomyosin moves exposing myosin binding sites on actin

Six Steps of Cross Bridge Cycling

- 1. Exposure of Binding Sites on Actin
 - Ca2+ required
- 2. Binding of Myosin to Actin
- 3. Power Stroke of the Cross Bridge
- 4. Disconnecting the Cross Bridge
- 5. Re-energizing the Cross Bridge
- 6. Removal of Calcium Ions

Exposure of Binding Sites on Actin


- Presence of an action potential in the muscle cell membrane.
- Release of calcium ions
- Calcium ions rush into the cytosol and bind to the troponin.
- There is a change in the conformation of the troponin-tropomyosin complex.
- This tropomyosin slides over, exposing the binding sites on actin.

Power Stroke of the Cross Bridge

- The ADP and P⁻ are released from the actin.
- The myosin head (cross bridge) tilts backward.
- The power stroke occurs as the thin filament is pulled inward toward the center of the sarcomere.

Removal of Calcium Ions

- Calcium ions fall off the troponin.
- Calcium is taken back up into the sarcoplasmic reticulum.
- Tropomyosin covers the binding sites on actin

