

So far....

- TALL or SHORT
- WHITE or PURPLE
- CURLY or STRAIGHT

So far...

-Complete dominance

- one allele completely COVERS up the other
- a true relationship of dominance and recessiveness
* only two phenotypic outcomes
-Ex.
$\bullet R=$ red
© $\mathrm{r}=$ white

$\bullet R R=$ red
$-\mathrm{Rr}=$ red
*rr= white

But, what if . . .

- RED, PURPLE, or BLUE
- SHORT, MEDIUM, or TALL
- CURLY, WAVY, or STRAIGHT

Intermediate Inheritance

- Incomplete dominance
* when neither allele covers up the other
- In the heterozygous, you fail to see EITHER TRAIT PURELY!
-three phenotypic outcomes - Ex.
- $\mathrm{R}=$ red
- R'= white
RR'= pink
- R'R'= white

Incomplete Dominance

Practice

- In snapdragons, flower color is controlled by incomplete dominance. The two alleles are red (R) and white (R '). The heterozygous genotype is expressed as pink.
a) What is the phenotype of a plant with the genotype RR?
b) What is the phenotype of a plant with the genotype R'R'?
c) What is the phenotype of a plant with the genotype RR'?

Intermediate Inheritance

- Codominance

- when BOTH alleles show up PURELY in the heterozygous.
-three phenotypic possibilities
- Ex:
$\Delta \mathrm{RR}=$ white
- $\mathrm{R}=$ white
- R'= red

$\bullet R R^{\prime}=$ white with red spots
- R'R'= red

Practice

In some chickens, the gene for feather color is controlled by codominance. The allele for black is B and the allele for white is B'. The heterozygous phenotype is known as erminette.

- If two erminette chickens were crossed, what is the probability that:
a) They would have a black chick?
b) They would have a white chick?

Multiple Alleles

- there are more than two alleles for one characteristic.
-you still only inherit one from each parent
*There are more than three possible combinations.

Multiple Alleles

- Example

-Human blood types
-Three possible alleles:

$$
\star I^{A}=\text { Type A }
$$

$\star \mathrm{I}^{\mathrm{B}}=$ Type B
\star i $=$ Type O

Blood Groups

Genotypes	Phenotypes
- $\mathrm{I}^{\mathrm{A}} \mathrm{I}^{\text {a }}$	- Type A
$\bullet I^{\text {A }}$	- Type A
$\bullet \mathrm{I}^{\mathrm{B}}{ }^{\text {B }}$	- Type B
- $\mathrm{I}^{\text {B }}$	- Type B
- ii	- Type O
$\bullet \mathrm{I}^{\mathrm{A}} \mathrm{I}^{\text {B }}$	- Type AB

Genotypes
$-I^{A} I^{A}$
$-\mathrm{I}^{\mathrm{A}} \mathrm{i}$
$-I^{B} I^{B}$
$\rightarrow \mathrm{I}^{\mathrm{B}} \mathrm{i}$

- ii
$\bullet I^{A} I^{B}$

Phenotypes

- Type A
- Type A
- Type B
- Type B
- Type O
- Type AB

Blood Groups Practice

-Sara has Type O blood. What is her genotype?

- Mark has Type B blood. What is his genotype?
\star Gert has Type AB blood. What is her genotype?

Blood Groups Practice

- Bob has Type A blood and Debbie has Type B blood. Is it possible for them to have a child with Type O blood?

Polygenic traits

- When more than ONE pair of genes affects a trait
*many, many phenotypic outcomes
\bullet Ex. Human height, weight, skin color, hair color

Polygenetic Inheritance

Polygenetic Inheritance

Epistasis

\star One gene alters the phenotypic expression of a second gene

- Examples:
*Wheat kernel color
-Squash fruit shape
-Sweet pea flower color

Coat color in Labrador retrievers

\checkmark One gene determines the pigment color
-B=black
-b=brown
*The other gene determines whether the pigment will be deposited

- $=$ pigment
* $=$ =no pigment

